2019诺贝尔化学奖颁给锂电池领域,锂电池的发展史你知道吗?
以下文章来源于中科院物理所 ,作者立青
就在刚刚,瑞典皇家科学院宣布,将2019年诺贝尔化学奖授予John B. Goodenough 、M. Stanley Whittingham、Akira Yoshino,以表彰他们在锂离子电池方面的贡献。
图片来自 @NobelPrize
这里面特别值得一提的是John B. Goodenough,他今年已经97岁高龄了。在此之前,这个记录由 90 岁高龄获得 2007 年诺贝尔经济学奖的里奥尼德·赫维克兹保持。
John B. Goodenough
锂电池已经深入到我们日常生活的方方面面,这个领域能获奖也是众望所归。今天我们就来给大家简单聊聊锂电池里面的历史。
人类社会的发展离不开能源,几次工业革命的发展都依赖于储能技术的发展。今天,锂离子电池为全世界提供着电力,从智能手机到电动汽车,锂离子电池已经无处不在,它为日益机动的世界扫平了障碍。
与其他商业化的可充放电池相比,锂离子电池由于其具有能量密度高、循环寿命长、工作温度范围宽和安全可靠等优点,成为了各国科学家努力研究的重要方向。
不同的电池技术在体积和重量能量密度方面的对比
锂离子电池是一种二次电池(可充电电池),主要由正极、负极、电解液、隔膜、外电路等部分组成。在电池内部,带电的原子,也被称为离子,沿着两个电极之间的路径运动,并产生电流。
锂离子电池主要依靠锂离子在正极和负极之间移动来工作。在充电过程中,锂离子从正极材料中脱出,经过电解液传输至负极,电子由负极经外电路转移至正极;而在放电过程中,锂离子和电子的运动方向则与充电过程相反。在当前最常见的一种可反复充放电的锂离子电池中,其正极是钴酸锂材料,负极是碳材料。
正在充电的锂离子电池
1912年,锂金属电池最早由吉尔伯特·牛顿·路易士(Gilbert N. Lewis)提出并研究,但由于锂金属的化学性质非常活泼,使得锂金属的加工、保存和使用对环境要求非常高,使得锂电池长期没有得到应用。
20世纪70年代,美国爆发石油危机,政府意识到对石油进口的过度依耐性,开始大力发展太阳能和风能。但由于太阳能和风能的间歇性特点,最终还是需要可充电电池来储存这些可再生的清洁能源。
此时,宾汉姆顿大学化学教授斯坦利·惠廷厄姆(M. Stanley Whittingham)在纽约起草了锂电池的初始设计方案,采用硫化钛作为正极材料,金属锂作为负极材料,制成了首个新型锂电池。
锂离子电池是由锂电池发展而来,随着科学技术的发展,现在锂离子电池已经成为了主流。
锂离子电池的基本概念,始于1972 年米歇尔·阿曼德(M. Armand)等提出的“摇椅式”电池(rocking chair battery)。在锂离子电池的研究中,正负极材料的研发,是锂离子电池发展的关键所在,有五位杰出的科学家在此方面做出了重要的开创性贡献,特别是美国奥斯汀得克萨斯大学机械工程及电子工程系教授约翰·班尼斯特·古迪纳夫(John B. Goodenough)为现在商业化正极材料的发展做出了卓越的贡献。
他在57岁时建造了锂离子电池的神经系统,钴酸锂(LiCoO2)正极材料是他的智慧结晶。他的这一材料,几乎存在于当前每一款流通的便携式电子设备中。
另一个重要的正极材料磷酸铁锂(LiFePO4)也是他的重要贡献之一。1997年,以他为主的研究群报导了磷酸铁锂可逆地迁入脱出锂的特性。磷酸铁锂是目前最安全的锂离子电池正极材料,不含任何对人体有害的重金属元素。
作为钴酸锂和磷酸铁锂等正极材料的发明人,古迪纳夫在锂离子电池领域声名卓著,是名副其实的“锂离子电池之父”。
今年,已经 97 岁高龄的古迪纳夫先生在 Nature Electronics 上刊文,回顾了可充电锂离子电池的发明历史,并对未来发展指明了道路。
商业锂离子电池正负极材料的示意图、主要发明人、发明时间
正极材料的研究成果,最终指引日本名古屋市的旭化成公司(Asahi Kasei)以及名城大学的旭化成(Akira Yoshino)教授制备出了第一个可充电锂离子电池:以钴酸锂作锂源正极材料、石油焦作负极材料、六氟磷酸锂(LiPF6)溶于丙烯碳酸酯(PC)和乙烯碳酸酯(EC)作电解液的可充放二次锂离子电池。
这个电池成功应用到索尼公司最早期移动电话中,并在1991年开始商业化生产,标志着锂离子电池时代的到来。在这随后的每天里,世界各地的科学家们都在测试和开发更为高效和安全的锂离子电池。
参考文献
[1] Armand, M.; Tarascon, J. M., Building better batteries. Nature 2008, 451 (7179), 652-657.
[2] Tarascon, J. M.; Armand, M., Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414 (6861), 359-367.
[3] Armand, M.; Murphy, D.; Broadhead, J., Materials for Advanced Batteries. 1980.
[4] 李泓, 锂离子电池基础科学问题(XV)——总结和展望. 储能科学与技术 2015, 4 (3), 306-318.
[5] Nishi, Y., The development of lithium ion secondary batteries. The Chemical Record 2001, 1 (5), 406-413.
出品 | 科普中国
点击图片阅读:2019诺贝尔物理学奖获得者揭晓!获奖者都有谁?
温馨提醒
北京科学中心试运营期间开馆时间:
主展馆及首都创新成果展:每周三至周日,上下午各一场,上午9:30-12:00,下午13:00-17:00,16:00停止检票入场。
儿童乐园:每周三至周日,上下午各一场,上午9:30-12:00,下午13:30-16:00。
关注“数字北京科学中心”微信号,点击底部菜单“酷馆”-“免费订票”,即可在线订票。